
Continuous Practices
Daniel Ståhl
daniel.stahl@liu.se



Who am I?

DANIEL STÅHL

MSc 2007
Linköping University

Joined Ericsson in 2009

PhD, 2017
University of Groningen

Joined LiU in 2019

ERICSSON

Developer
Architect
Continuous Practices

…

AI Strategy
AI Governance
Research supervision

RESEARCH, WRITING

Continuous integration
Continuous delivery
Continuous deployment
Large-scale testing
Development practices
Teaming
Mob programming



Agenda

3Daniel Ståhl

WHAT’S WHAT CONTINUOUS 
INTEGRATION, DELIVERY 

AND DEPLOYMENT

WHY CONTEXT MATTERS EXAMPLES OF CONTEXTS 
AND HOW THEY DIFFER

SOME FINAL 
REFLECTIONS



What’s What?

CONTINUOUS 
INTEGRATION

A developer practice 
where developers 
integrate their work 
frequently […]

CONTINUOUS
DELIVERY

A development practice 
where every change is 
treated as a potential 
release candidate [one 
is] able to deploy and/or 
release […]

CONTINUOUS
DEPLOYMENT

An operations practice 
where release 
candidates [are] 
frequently and rapidly 
placed in a production 
environment […]

WHY DOES THIS 
MATTER?

Semantics are 
important!

“Unlike genes, which are 
almost digitally coded, 
memes are often 
replicated with low 
fidelity as soon as they 
become a tad complex.”

P. Kruchten 2007

Also, the exam…

4



Putting It All Together

5Daniel Ståhl



Continuous Integration:
Why Do We Do It?

IMPROVED QUALITY

Does it lead to improved 
quality? What do we 
mean by quality?

IMPROVED 
PREDICTABILITY

No big bangs means less 
fluctuation over time in 
quality. Less uncertainty, 
less integration 
overhead.

EFFICIENCY

Build and test 
automation can improve 
both efficiency and 
effectiveness, but are we 
really thinking of 
continuous integration?

SPEED

Everybody loves speed, 
but let’s be mindful of 
the difference between 
speed and frequency. 
And speed of what? 
Time to market? Time to 
feedback…?

IT FEELS GOOD?

Removes one potential 
source of developer 
anxiety.
Committing makes the 
code more “real”. Doing 
“real” things is more fun!

TRANSPARENCY AND 
FEEDBACK

Power to the developers! 
But are we still not 
thinking of another 
practice?

ENABLING
CONTINUOUS DELIVERY

Continuous delivery pre-
supposes continuous 
integration. Or does it?

EASIER 
TROUBLESHOOTING

A smaller change delta 
makes it much easier to 
locate a fault!



Continuous Integration:
What Does It Look Like?

Shared
Repo

Private
Clone

Private
Clone 1. clone

2. clone

3. push

4. fetch

5. push



Continuous Integration:
Why Is It Hard?

SCALE

The more people, the 
more changes, the more 
merging.

CHOOSE YOUR POISON

Some constant pain, or 
very sharp pain every 
few weeks?

TEAM-INTERNAL 
INTEGRATION

Why not just integrate 
within our team? It 
seems much easier…

MANUFACTURABILITY

We speak very little in 
software engineering of 
how to design software 
that is easy to develop, 
test and integrate.

This is a crucial 
architectural concern!



Continuous Delivery:
Why Do We Do It?

IMPROVED QUALITY

Assuming we trust our 
tests.
An automated pipeline is 
more consistent and 
reliable, but automated 
tests have weaknesses.

IMPROVED 
PREDICTABILITY

In theory, you always 
have a set of recent 
release candidates to 
choose from.

EFFICIENCY

Automated builds and 
tests are much cheaper, 
but not without CAPEX 
and OPEX.

SPEED

Yes! Let’s still remember 
the difference between 
speed and frequency, 
though.
Simply being quick is 
easy, though…

IT FEELS GOOD?

Successful tests, positive 
code analyses and green 
lights provide a sense of 
security.
Is it a false sense, 
though?

TRANSPARENCY AND 
FEEDBACK

Yes! And remember 
there are numerous 
stakeholders with 
varying perspectives.

ENABLING CONTINUOUS 
DEPLOYMENT

Without continuous 
delivery, there can be no 
continuous deployment.

EASIER 
TROUBLESHOOTING

The pipeline can provide 
lots of test data with 
very fine granularity.



Continuous Delivery:
What Does It Look Like?

Shared
Repo

Private
Clone

Private
Clone

1. clone
Build

Sched.

Build
Env

2. start

3. collect5. feedback

DML

4. archive

Test
Sched.

Test
Env

Test
Results

Test 
Cases

6. download

8. download

Test
Env

Test
Env

Test
Env

9. store

10. feedback

7. setup

11. download

12. test

13. store

14. feedback



Continuous Delivery:
Why Is It Hard?

THE LAST 1% IS 90% OF 
THE EFFORT

Automatically creating 
an almost-release 
candidate is fairly easy. 
Creating an actual one 
with correct packaging, 
correct documentation, 
sufficient traceability 
and regulatory 
compliance is not.

WHAT DO I TEST?

There is limited capacity 
and time to test in the 
pipeline. There will 
always be more tests to 
run than you really have 
time for.

TEST FLAKINESS

Test flakiness is death. If 
you can’t rely on your 
test cases, you can’t rely 
on your release 
candidates.

It’s not just false 
positives, but also false 
negatives!

ESTABLISHING TRUST

Switching to a heuristic 
way of thinking about 
release candidates is a 
huge mindset shift. Do 
not underestimate the 
change management 
aspect.



Continuous Deployment:
Why Do We Do It?

IMPROVED QUALITY

Potentially, yes. Let us 
consider MTTR vs. MTTF. 
But this depends on 
context!

IMPROVED 
PREDICTABILITY

No more manual 
installation checklists, no 
more tweaked 
production 
environments.

EFFICIENCY

Automated deployments 
are much cheaper. Still, 
there’s CAPEX and OPEX 
involved.

SPEED

Yes! Let’s still remember 
the difference between 
speed and frequency, 
though.

IT FEELS GOOD?

Enable developers to 
deploy actual live 
software to users every 
day.

TRANSPARENCY AND 
FEEDBACK

Yes! Particularly high 
potential for A/B testing, 
feature experimentation 
etc. Evidence based 
design decisions!

ENABLING DEVOPS

Automatically and 
continuously deploying 
turns operations into just 
another problem you 
solve by applying 
software to it.

EASIER 
TROUBLESHOOTING

Potential for very fine-
grained in-production 
data.



Continuous Deployment:
What Does It Look Like?

Shared
Repo

Private
Clone

Private
Clone

Build
Sched.

Build
Env

DML Test
Sched.

Test
Env

Test
Results

Test 
Cases

Test
Env

Test
Env

Test
Env

1. analyze

Deploy
Sched.

2. download

Prod
Env

3. deploy

In-
Prod
KPIs

4. collect

5. feedback



Continuous Deployment:
Why Is It Hard?

ENVIRONMENT 
CONTROL

Do you control the 
production 
environment? What is 
your distribution model? 
What do your customers 
and/or users think?

QUALITY IS 
PARAMOUNT

Without sufficient 
quality, don’t even think 
about continuous 
deployment.

ZERO DOWN-TIME 
UPGRADES ARE HARD

How do you upgrade the 
software without 
stopping the service? 
Can be done, but is non-
trivial.

MANAGING STATE

Upgrading a stateless
service is doable, but 
what about a stateful
one?



Context Matters!

CONTEXT ALWAYS 
MATTERS

A big part of being a 
software engineer is 
understanding your 
context, and 
understanding what you 
can get away with.

DIVERSITY

The software industry is 
very diverse. This puts 
very different 
requirements on 
software production 
systems.

ERR ON THE SIDE OF 
CAUTION

Do not assume that what 
once worked for you will 
work in a different 
context which you do 
not understand.



Contextual Factors

SAFETY CRITICALITY

What is the worst case 
scenario?

POWER BALANCE

What is the balance of 
power between you and 
your customers and/or 
consumers?

LEAD TIME

Is sooner always better?

PROXIMITY TO 
HARDWARE

Is your target 
environment Amazon 
Web Services or custom 
hardware you designed?

REGULATION

Are there regulations 
you need to stay 
compliant with?

DISTRIBUTION MODEL

How does your software 
reach its target 
environment?

SCALE

Are there 2 or 2,000 
developers writing the 
source code?



Meet Jane
Defense Industry

SAFETY CRITICALITY

Potential for injury and 
death.

SCALE

Hundreds of software 
engineers.
Many more hardware 
engineers and other 
professionals.

AND MORE…

Small number of large customers.
Tight coupling to hardware.
Highly regulated market.

Development of a 
new fighting 

vehicle

DISTRIBUTION MODEL

Software updates 
distributed and installed 
on physical media.
No over-the-air 
connection to installed 
base.



Meet John
Gaming Industry

SAFETY CRITICALITY

Inconvenienced and 
annoyed end users.

SCALE

Three developers.
Two content creators.
Two QA.

AND MORE…

Large number of small customers.
Hardware agnostic.
Unregulated market.

Development of a 
new computer 

game

DISTRIBUTION MODEL

Downloaded by end user 
devices via online 
distribution system and 
marketplace.



A Conundrum and Some Advice

TO PUSH OR TO PULL?

How do you trigger 
actions in your pipeline?

EVERYTHING AS SOURCE

Version control not only 
your production code! 
Your environment 
definitions, your build 
scripts, your test code, 
your documentation…

CONTAINERIZATION

Containerization is not 
just for your product. 
Containerize your build 
and test environments!

LET HUMANS DO WHAT 
HUMANS DO BEST

Don’t think all testing 
can be automated (yet). 
Complement automated 
testing with e.g. 
exploratory testing.

MAKE DEPLOYING
SAFE AND EASY

If deploying is scary or 
painful, developers will 
try to avoid it.

DEFINITIVE MEDIA 
LIBRARY

Identify a single blessed 
archive for everything 
you produce. There must 
be no ambiguities.

MAKE COMMITTING 
SAFE AND EASY

If committing is scary or 
painful, developers will 
try to avoid it.

FIGHT TEST FLAKINESS

Test flakiness is death. 
Having no test at all is 
better than having a 
flaky test.



Consequences of Continuous Practices

FEATURE EXPERIMENTATION

Continuous deployment enables feature experimentation.

Feature experimentation enables extremely rapid hypothesis-experiment-evaluation loops.

Hypotheses may be wild guesses rather than based on thorough analysis.

Hypotheses may be phrased, tested and evaluated by a single curious developer in a single day.

EVOLUTION OVER 
ENGINEERING

Software development 
becomes governed by 
KPIs, rather than 
requirements.

WHAT ABOUT THE 
V-MODEL?

How does this relate to 
the V-model of software 
engineering?



The end!
21

FURTHER READING

!?



www.liu.se

Daniel Ståhl


	Continuous Practices
	Who am I?
	Agenda
	What’s What?
	Putting It All Together
	Continuous Integration:�Why Do We Do It?
	Continuous Integration:�What Does It Look Like?
	Continuous Integration:�Why Is It Hard?
	Continuous Delivery:�Why Do We Do It?
	Continuous Delivery:�What Does It Look Like?
	Continuous Delivery:�Why Is It Hard?
	Continuous Deployment:�Why Do We Do It?
	Continuous Deployment:�What Does It Look Like?
	Continuous Deployment:�Why Is It Hard?
	Context Matters!
	Contextual Factors
	Meet Jane�Defense Industry
	Meet John�Gaming Industry
	A Conundrum and Some Advice
	Consequences of Continuous Practices
	The end!
	Bildnummer 22

